
Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data

Junjie Liang, Weijieying Ren, Hanifi Sahar, Vasant Honavar
The Pennsylvania State University

jliang282@outlook.com, {wjr5337, szh6071, vuh14}@psu.edu

Intuition of Assuming Mixture of Gaussians
(MoG) in Latent Space

Lemma 2 assumes that data follows a Mixture of Gaussians
(MoG) distributions in their latent space e(X). The intuition
behind such an assumption is that, unlike input space, the
low-dimensional latent representation is dense and continu-
ous. When mapping data from the input space into a latent
space, Euclidean distance is often chosen as the distance
metric (Xie, Girshick, and Farhadi 2016). From a genera-
tive process viewpoint, the Euclidean distance depicts the
variance between data points generated by the same Gaus-
sian distribution. When data in latent space display cluster
structure, the generative process can be seen as a Mixture of
Gaussians (MoG) (Jiang et al. 2017). In our relaxed formu-
lation (i.e., (3)), a Gaussian prior is used to ensure the latent
space follows an MoG prior. Please see more details in the
following section.

Formulation of Applying Gaussian Prior to the
Latent Representation

Lemma 2 shows that L2 is equivalent to L1 when latent
space e(X) exhibits a Mixture of Gaussian (MoG) structure.
Specifically, in the proof of Lemma 2, we showed that the
critical assumption lies in that the data point x ∈ X can be
generated with e(x) = e(z∗) + ξ, where ξ follows a zero-
mean Multivariate Gaussian Distribution. With sufficiently
small η and ϵ, the inducing clusters are forced to be mutually
independent and associated with the cluster centers among
the latent space of the training data. Therefore, to enforce a
Mixture of Gaussian (MoG) prior to the latent space e(X),
we need to introduce a Gaussian prior to each data point
centered towards its closest inducing clusters.

Let e(z∗) be the closest inducing clusters for data point
e(x), the Gaussian prior for data point can be formulated as:

e(x)∼N (e(z∗), σ2
xI) (1)

Here σx is the model parameter introduced along with the
Gaussian prior. Assuming the Gaussian prior is applied to
each training data independently, then the log-likelihood of
Gaussian prior on the entire training data can be represented

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by:

LGau(e(X)) = log
∏
x∈X

N (e(z∗), σ2
xI) (2)

where z∗ = argmaxz Kxz .
Combining the Gaussian prior to the relaxed optimization

formulation, we arrive at the final objective function:

argmin
Θ

L3 = −Eq(f,u)[log p(y|f)] + KL[q(u)||p(u)]

+ λ1 max diag(BB⊤)− λ2 min
x∈X

max
z∈Z

sxz − λ3LGau(e(X))

(3)

To summarize, the learnable model parameters in Θ in-
cludes (i) parameters in the kernel function. This includes
parameters in the encoder network e(v), individual embed-
dings e(i), kernel coefficients α(v), α(i), and length scale
parameters in the RBF kernels. (ii) Parameters related to the
inducing clusters, i.e., the variational prior mZ and S and
embeddings for the inducing clusters Z.

Implementation Details and Parameter Setup
The pseudo-code of ICDKGP is presented in Alg. 1. We
implement ICDKGP using PyTorch (Paszke et al. 2019).
For ICDKGP, the state encoding size for the mean model
is chosen from {10, 30, 50} based on the performance in
the validation set. Both the mean model and GP models
are trained for 2, 000 iterations with early stopping. We use
M = 10 inducing clusters for all data sets. τ is picked from
{0.3, 0.5, 0.8, 0.9, 1}, λi, i = 1, 2, 3 are picked separately
from {0.001, 0.01, 0.1, 0.5, 1, 3}. In our experiments, we ob-
serve that the variance parameter σx for x ∈ X related to
LGau has a strong negative impact on the model performance
when being learned freely. For a stable performance, we fix
σx to 0.1 on all experiments. All hyper-parameters corre-
sponding to the deep kernel including dimensions of latent
space and network structures are the same as in (Liang et al.
2021). All model parameters are updated using the Adam
optimizer. Learning rates are picked from {0.01, 0.001}. All
hyperparameters are chosen with a validation set.

As for the implementation of our baseline methods,
we use the implementations of GLMM, GEE, and LGPR
available in the lmer4, PGEE and lgpr packages,

respectively from CRAN.1. We use the LMLFM implementa-
tion from https://github.com/junjieliang672/LMLFM.
Implementation of SVGP and DSVGP can be
found through Gpytorch (Gardner et al. 2018) at
https://docs.gpytorch.ai/en/v1.2.1/examples/04 Variational
and Approximate GPs/SVGP Regression CUDA.html.
Implementation for SKIPGP can be found at https://docs.
gpytorch.ai/en/v1.2.1/examples/02 Scalable Exact GPs/
Scalable Kernel Interpolation for Products CUDA.html.
For GLMM, we keep most hyper-parameters to their default
values but increase the maximum iteration to 200. In GEE,
we use a first-order auto-regressive correlation structure. The
maximum iteration is fixed at 200. For SVGP, the number
of inducing points is picked from {100, 200, 500}. The
learning rate is picked from {0.01, 0.001}. For DSVGP,
we reuse our encoder network from the time-varying deep
kernel component. The hyper-parameters are picked from
the same set of candidates as in SVGP. For SKIPGP, the max
root decomposition size is fixed at 300 (as used by default).
Other hyper-parameters corresponding to the optimizer are
also chosen from the same set of candidates as in SVGP.

For real-world data, we conducted KMeans clustering on
the latent representation learned from Module 1 with K rang-
ing from 2 to 20. We observe that when K ≥ 8, the sil-
houette score seems to be saturated. Inspired by the fact that
L-DKGPR achieves good performance with only 10 inducing
points, we fixed the number of including clusters in all our
experiments at 10 and initialized the latent representation of
inducing clusters to be the centers learned from KMeans. In-
terestingly, we observe that ICDKGP can effectively learn the
representation of inducing clusters to match the number of
clusters in the latent space. From Fig. 4, we observe that the
number of clusters in the T-SNE visualization is consistently
less than 10.

All experiments are conducted on a desktop machine with
AMD Ryzen9 5900X CPU, 32GB RAM, and RTX 3070
graphics card.

Complexity Analysis for inducing clusters vs.
inducing points

Assuming N,M, d is the training/testing size, inducing
point/cluster size, and latent space size respectively. Typ-
ically, we have N >> M ≈ d. The major computation
blocks for inducing points are KXZ (O(NMd)) and K−1

ZZ

(max(O(M3), O(M2d)). Thus computational complexity
for inducing points per iteration is O(NMd). Inducing clus-
ters introduces a few more steps, i.e., representation map-
ping (O(NM)) and computing the regularization terms
(O(NMd)). Therefore, the overall computational complexity
remains the same as inducing points. For space complexity,
both methods would need to store the latent representation
O(Nd), KXZ (O(NM)) and KZZ (O(M2)), thus the space
complexity is max(O(Nd), O(NM)). In conclusion, both
the time and space complexity are scaled linearly to the data
size.

1https://cran.r-project.org/

Algorithm 1: ICDKGP
Input: Training set S = {X,y}, latent dimension

Dv, Di, number of inducing points M ,
gradient-based optimizer and its related
hyper-parameters (i.e., learning rate, weight
decay, mini-batch size), regularization
coefficients λ, β, temperature τ .

Output: Θ.
1 Initialize the parameters Θ̂ // Initialize

either randomly or with
pre-trained parameters

2 Train the Zero-mean Deep Kernel GP (Module 1) with
longitudinal kernel in Eq. (1) by minimizing the
ELBO in Eq. (3) // See description in
Module 1 for details.

3 Train the State-space Mean Function (Module 2) with
the output latent representation e(X) from Module 1
// See description in Module 2 for
details.

4 Fixed the parameters of Module 2 and use it as mean
function for ICDKGP.

5 Train ICDKGP (Module 3) with its encoder network
initialized by the pre-trained encoder network in
Module 1 // Objective function of
Module 3 is given by Eq. (10).

Experimental Data Setup

Generating Simulated Data. We construct simulated longi-
tudinal data sets that exhibit i.e., longitudinal correlation (LC)
and multilevel correlation (MC) as follows: The outcome is
generated using y = f(X) + ϵ where f(X) is a non-linear
transformation based on the observed covariate matrix X and
the residual ϵ∼N(0,Σ). To simulate longitudinal correlation,
we simply set Σ to a block diagonal matrix. For each individ-
ual, we use a first-order auto-regressive correlation structure
(AR(1)) with decaying factor fixed at 0.9. To simulate a data
set that exhibits multilevel correlation, we first split the indi-
viduals into C clusters. We then define the cluster correlation
matrix by setting the correlation associated to data points
in the same cluster to 1. Finally, we compute the multilevel
correlation by summing up the longitudinal correlation and
cluster correlation. To simulate non-smooth target function
across the observations per individual, we split the observa-
tions for each individual into 2 clusters and set the correlation
associated to data points in the same cluster to 1. Following
(Cheng et al. 2019; Timonen et al. 2019), we simulate 40
individuals, 20 observations, and 30 covariates for each indi-
vidual. To simulate correlation among the covariates, we first
generate 10 base features independently from [0, 1) uniform
distribution, then the covariate matrix X is computed using
an encoder network with architecture 10 − 100 − Tanh −
Dropout(0.7) − BatchNorm − 30 − Tanh. It therefore
results in 30 covariates that are conditionally independent
given encoder network and base features. We hold out both
the base features and the encoder network to all comparing
methods, thus leading to a covaraite matrix with non-linear

(a) Smooth observations (b) Non-smooth observations

Figure 1: Simulated examples of outcomes from a single individual.

(a) TADPOLE (b) SWAN (c) GSS

Figure 2: Real world examples of non-smooth outcome transitions over time from the observations for a single individual.

correlation that is unknown to all methods. To generate y, we
use another nonlinear transformation f(X), which is defined
by a network with structure 30 − 100 − Tanh − 1. In our
experiment, We vary the number of clusters C from [2, 5].
Examples of simulated outcomes from a single individual is
given in Fig. 1.

Pre-processing on SWAN data. Since CESD score is not
contained from the original SWAN data, we manually com-
pute the score based on its definition (Radloff 1977). To form
the outcome label, we define an adjusted CESD score by
y = CESD − 15, thus y ≥ 0 indicates depression. We
center y with y = y − mean(y). After computing the label,
we exclude all columns that are directly associated to com-
puting the CESD score. We convert the categorical features
using one-hot encoding and perform standard scaling on the
continuous features.

Pre-processing on GSS data. Since the original data set
contains repeated columns for the same survey question, we
keep only one column for each survey question. We re-format
all the answer codes associated to ‘unknown’ and ‘missing’
to ‘unknown’. The outcome label is derived from the field
‘General Happiness’, we code the value ‘pretty happen’ and
‘very happy’ to 1 and the others to −1. As the other covaraites,
We convert the categorical features using one-hot encoding

and perform standard scaling on the continuous features.

Pre-processing on TADPOLE data. There are three data
sets in the original files. We first combine the three data
sets and remove the repeated data points. Then, we convert
the categorical features using one-hot encoding and perform
standard scaling on the continuous features. The outcome
label is defined by the value of ‘ADAS13’. Similarly, we
center the label with y = y − mean(y).

Examples of non-smooth outcome transition for each of
the real-world data can be found in Fig. 2.

References
Cheng, L.; Ramchandran, S.; Vatanen, T.; Lietzén, N.; La-
hesmaa, R.; Vehtari, A.; and Lähdesmäki, H. 2019. An ad-
ditive Gaussian process regression model for interpretable
non-parametric analysis of longitudinal data. Nature commu-
nications, 10(1): 1798.
Gardner, J.; Pleiss, G.; Weinberger, K. Q.; Bindel, D.; and
Wilson, A. G. 2018. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. In Advances in
Neural Information Processing Systems, 7576–7586.
Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; and Zhou, H. 2017.
Variational deep embedding: an unsupervised and generative
approach to clustering. In Proc IJCAI, 1965–1972.
Liang, J.; Wu, Y.; Xu, D.; and Honavar, V. G. 2021. Lon-
gitudinal deep kernel Gaussian process regression. In Proc.
AAAI, volume 35, 8556–8564.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS 32,
8024–8035. Curran Associates, Inc.
Radloff, L. S. 1977. The CES-D scale: A self-report depres-
sion scale for research in the general population. Applied
psychological measurement, 1(3): 385–401.
Timonen, J.; Mannerström, H.; Vehtari, A.; and Lähdesmäki,
H. 2019. An interpretable probabilistic method for heteroge-
neous longitudinal studies. arXiv preprint arXiv:1912.03549.
Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, 478–487. PMLR.

