

J Liang et al.

Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data

Junjie Liang, Weijieying Ren, Hanifi Sahar, Vasant Honavar

The Pennsylvania State University

jiang282@outlook.com, {wjr5337, szh6071, vuh14} @psu.edu

Examples of Longitudinal Data and their Applications

Predictive Modeling for Longitudinal Data

🐼 AAAI24 Paper ID:5357 Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data J Lian

Motivation and Research Goals

In longitudinal study, it is common to see abrupt changes that seemingly indicates a discontinuous curve due to various reasons.

Challenges with H-D longitudinal data

- Kernel learning is difficult when training data is limited.
- Most existing works rely on kernels that embeds a continuous/finite differentiable functional space.

Figure 2: Real world examples of non-smooth outcome transitions over time from the observations for a single individual.

Problem Definition

• Goal: Make accurate outcome prediction while accounting for the complex, unknown multilevel data correlation.

 \succ Learn $p(\mathbf{y}|X) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, make prediction using $\boldsymbol{\mu}$, estimate correlation using $\boldsymbol{\Sigma}$

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}|X) d\mathbf{f}$$
$$(\mathbf{y}|\mathbf{f}) \sim N(\mathbf{f}, \sigma^2 I)$$
$$f \sim f_\perp + \mathcal{GP}(\mathbf{0}, k_\theta)$$

Proposed Method

Decompose the GP into a deterministic mean function and a zero-mean GP with deep kernel

 f_{\perp} : State-space mean function

 g_{θ} : Inducing Clusters GP

Inducing Clusters Explained

- Inducing clusters = Inducing points + Interpretation
 - Inducing points reduces the computational complexity of GP
 - Interpretation cares about the structure of the input data and tries to force inducing points to locate at the cluster centers of the input data

Constraint ELBO for Proposed Method

 $\log p(\boldsymbol{y}) \ge \mathbb{E}_{q(\mathbf{f},\mathbf{u})}[\log p(\boldsymbol{y}|\mathbf{f})] - \mathrm{KL}[q(\mathbf{f},\mathbf{u})||p(\mathbf{f},\mathbf{u})] \quad (3)$

$$p(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\begin{bmatrix}\boldsymbol{\mu}_{X}\\\boldsymbol{\mu}_{Z}\end{bmatrix}, \begin{bmatrix}K_{XX} & K_{XZ}\\K_{XZ}^{\top} & K_{ZZ}\end{bmatrix}\right)$$
(4)

$$q(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_X + A(m_z - \boldsymbol{\mu}_Z) \\ m_Z \end{bmatrix}, \begin{bmatrix} V & AS \\ SA^\top & S \end{bmatrix}\right)$$
(5)

where $A = K_{XZ}K_{ZZ}^{-1}$, $V = K_{XX} - AK_{XZ}^{\top} + ASA^{\top}$. Since

we have two intuitions:

K_{ZZ}, *S* both almost diagonal
 K_{XZ}, *AS* both almost row-wise single-entry

$$\underset{\Theta}{\operatorname{arg\,max}\,} \mathcal{L}_{1} = \mathbb{E}_{q(\mathbf{f},\mathbf{u})}[\log p(\boldsymbol{y}|\mathbf{f})] - \operatorname{KL}[q(\mathbf{u})||p(\mathbf{u})] \qquad (6)$$

s.t.
$$\max \operatorname{diag}(BB^{\top}) \leq \epsilon, \quad \max \operatorname{diag}(CC^{\top}) \leq \epsilon \qquad (6a)$$

where $B = K_{ZZ} - \text{diag}(K_{ZZ}), C = K_{XZ} - D \circ$ K_{XZ} with D as a masking matrix defined by $D_{xz} =$ $\begin{cases} 1, \quad D_{xz} = \max_j D_{xj} \\ 0, \quad \text{otherwise} \end{cases}$. Here, ϵ is a hyperparameter that

specifies the threshold for the constraints; and ' \circ ' denotes the Hadamard (element-wise) product. Solving the constrained optimization problem in (6) is hard because the masking matrix D has zero gradients everywhere. Hence, in what follows, we introduce a relaxed version of (6).

9

Relaxed Constraint ELBO

• Consider redefining the representation of X by soft mapping from its closest inducing points Original: $e(x) = e_{\gamma}(x)$ Now: $\hat{e}(x) = s_{xz^*}e(z^*) + (1 - s_{xz^*})e(x)$

$$\underset{\Theta}{\operatorname{arg\,max}\,} \mathcal{L}_{1} = \mathbb{E}_{q(\mathbf{f},\mathbf{u})}[\log p(\boldsymbol{y}|\mathbf{f})] - \operatorname{KL}[q(\mathbf{u})||p(\mathbf{u})] \quad (6)$$

$$\underset{\Theta}{\operatorname{s.t.}} \max \operatorname{diag}(BB^{\top}) \leq \epsilon, \quad \max \operatorname{diag}(CC^{\top}) \leq \epsilon \atop (6a) \quad (6a) \quad (6b) \quad$$

Theoretical Analysis on Relaxed Constraint ELBO

- Lemma 1. Solution of \mathcal{L}_2 is feasible for \mathcal{L}_1 when $\eta \to 0$.
- Lemma 2. \mathcal{L}_2 converges to \mathcal{L}_1 when training data form apparent Mixture of Gaussian (MoG) distributions around the latent space $e(\mathcal{X})$.
- Lemma 1 defines the worst-case scenario while Lemma 2 defines the best-case scenario

Experiment Questions

- RC1. How does performance of ICDKGP compare with SOTA LDA baselines?
- RC2. Can ICDKGP better recover complex correlation structure in longitudinal data?
- RC3. To what extent does the performance of ICDKGP depend on the mean function and inducing clusters?

Data sets and Baselines

- Data:
 - Simulated data.
 - Three real-world data sets.
- Baselines:

Datasets	N	Ι	P
Simulated	1600	40	30
SWAN	28405	3300	137
GSS	59599	4510	1553
TADPOLE	8771	1681	24

- Conventional longitudinal models: GLMM; GEE
- State-of-the-art longitudinal models: LMLFM; L-DKGPR
- Gaussian Process models: SKIPGP, SVGP, DSVGP

Answering RC1.

Target Type	Method	LC LC	MC(C = 2)	MC(C = 3)	MC(C = 4)	MC(C = 5)
Smooth	ICDKGP	84.2±2.9	99.5±0.5	99.5±0.3	99.5±0.3	99.6±0.3
	L-DKGPR	86.0±0.2	91.3 ± 0.2	99.6±0.2	99.8 ±0.2	99.8±0.2
	LMLFM	54.7±15.1	-138.3±121.9	-48.3 ± 123.6	22.6 ± 49.0	36.2 ± 41.1
	SVGP	78.5 ± 3.1	-102.7 ± 83.1	-102.7 ± 83.1	-51.6 ± 41.5	-36.4 ± 35.2
	DSVGP	51.1±10.9	-138.3±126.4	-30.6 ± 21.3	-27.4 ± 27.8	-5.8 ± 3.3
	SKIPGP	17.4 ± 40.6	-104.9 ± 86.5	-67.2 ± 36.1	-85.0 ± 40.2	-77.3 ± 36.9
	GLMM	5.3±27.9	-656.3±719.8	-801.4 ± 507.4	-684.1±491.3	-528.7 ± 313.5
	GEE	59.0±24.5	-636.1 ± 606.0	-703.6 ± 465.8	-665.6 ± 554.3	-516.5 ± 457.5
Non-smooth	ICDKGP	84.2±5.2	89.1±0.5	89.6±2.9	92.0±5.4	93.1±3.2
	L-DKGPR	76.8 ± 17.8	62.7 ± 41.9	$75.0{\pm}12.0$	89.6 ± 5.5	$83.4{\pm}7.8$
	LMLFM	76.4 ± 8.8	70.8 ± 1.9	69.4 ± 3.6	73.1 ± 4.6	69.2 ± 7.3
	SVGP	69.2±13.6	$31.2{\pm}20.4$	$26.0{\pm}28.7$	19.3 ± 26.3	10.2 ± 19.9
	DSVGP	78.5±16.9	$35.0{\pm}28.0$	31.5 ± 29.6	20.7 ± 30.3	$9.7{\pm}24.5$
	SKIPGP	68.4±13.5	$31.2{\pm}20.1$	28.1 ± 25.0	$19.8 {\pm} 25.5$	12.1 ± 18.2
	GLMM	66.8±15.9	18.7 ± 26.0	11.4 ± 38.4	$1.9{\pm}30.6$	-10.9 ± 27.1
	GEE	71.6 ± 14.9	29.3 ± 24.6	$25.8{\pm}28.8$	17.7 ± 30.1	$5.0{\pm}23.6$

Table 1: Regression accuracy R^2 (%) comparison on simulated data over different correlation structures.

Data sets	N	Ι	P	ICDKGP	L-DKGPR	LMLFM	SVGP	DSVGP	SKIPGP	GLMM	GEE
$TADPOLE^S$	595	50	24	53.8±5	44.0 ± 6	8.7±5	-0.5±4	-1.7±5	-6.7±26	50.8 ± 6	-11.4±5
\mathbf{SWAN}^S	550	50	137	47.9 ±4	$46.8 {\pm} 5$	38.6 ± 4	-24.3 ± 8	19.9 ± 3	-36.8 ± 10	40.1 ± 8	46.4 ± 8
\mathbf{GSS}^S	1.5K	50	1.6K	25.3±3	19.1 ± 4	15.3 ± 1	8.9 ± 6	$6.0{\pm}13$	NI	NC	-4.6 ± 4
TADPOLE ^L	8.7K	1.7K	24	63.1±2	64.9±1	10.4 ± 1	21.3 ± 1	14.1 ± 4	OOM	61.9±2	17.6±1
$SWAN^L$	28.4K	3.3K	137	54.2±0	52.5 ± 0	48.6 ± 2	46.4 ± 0	46.1 ± 1	OOM	NC	NC
\mathbf{GSS}^L	59.6K	4.5K	1.6K	56.4±1	56.9±0	54.8 ± 2	55.6 ± 0	45.8 ± 4	OOM	NC	NC

AAAI24 Paper ID:5357

Answering RC2.

Figure 3: Recovering correlation structure: Comparison of IDDKGP with SOTA baselines on simulated data.

J Liang et al. <u>14</u>

Answering RQ3.

Data	ICDKGP	DKGP		DKGI	Mean		
sets	M=10	M=10	M=100	M=10	M=100	Function	
TADPOLE ^L	63.1±1.8	60.7±3.9	60.2 ± 4.1	58.9±3.1	61.7±3.4	57.1±3.9	
\mathbf{SWAN}^L	54.2±0.2	54.4±0.5	54.8±0.8	43.3 ± 3.8	$52.8{\pm}0.9$	53.9±0.6	
\mathbf{GSS}^L	56.4±0.9	53.9 ± 1.3	53.7 ± 1.2	48.2 ± 10.2	51.9 ± 5.4	$54.8{\pm}0.7$	

🐼 AAAI24 Paper ID:5357 Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data

Conclusions & Future Works

- We proposed ICDKGP to handle longitudinal data with smooth/nonsmooth outcomes
- We introduce and formulate inducing clusters, featuring interpretability of inducing points related technique.
- Future works
 - Show the broad applicability of inducing clusters by applying it to general ML problems.

Thanks for your attention!

AAAI24 Paper ID:5357 Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data

J Liang et al.