
Longitudinal Deep Kernel Gaussian Process Regression

Paper #1894

Derivations for L-DKGPR1

Model Inference. We start with the ELBO:2

L , Eq(f,u|X,Z)[log p(y|f)]− KL[q(u|X,Z)||p(u|Z)] (1)

where q(f,u|X,Z) = p(f|u, X, Z)q(u|X,Z). Follow-3

ing the DTC assumption (Liu et al. 2020), we substitute4

p(f|u, X, Z) with its deterministic form f = Au with5

A = KXZK
−1
ZZ . Together with the reparameterization6

q(u|X,Z) = µq + Lqε with ε∼N (0, I), we can rewrite7

the first term of (1) as:8

Eq(f,u|X,Z)[log p(y|f)]

=−N log σ − 1

2σ2
Eε[‖y −A(µq + Lqε))‖22]

=−N log σ − 1

2σ2

(
‖y‖22 − 2y>Aµq + ‖Aµq‖22 + ‖ALq1‖22

)
(2)

Since the second term in (1) is the KL divergence between9

two multivariate Gaussian distributions, the analytical form10

can be obtained directly as11

2KL(q(u|X,Z)||p(u|Z)) = log
|KZZ |
|Lq|2

−M + tr(K−1ZZLqL
>
q) + µ>q K

−1
ZZµq (3)

Combining (2) and (3), we therefore obtain:12

L =−N log σ − 1

2σ2

(
‖y‖22 − 2y>Aµq + ‖Aµq‖22 + ‖ALq1‖22

)
︸ ︷︷ ︸

Eq(f,u|X,Z)[log p(y|f)]

− 1

2

[
log
|KZZ |
|Lq|2

−M + tr(K−1ZZLqL
>
q) + µ>q K

−1
ZZµq

]
︸ ︷︷ ︸

KL[q(u|X,Z)||p(u|Z)]

(4)

where 1 is a column vector of ones. We can then compute the13

partial derivatives of L w.r.t. the parameters of the proposal14

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

posterior q(u|X,Z) (i.e., {µq, Lq}) and derive its optimal 15

form, such that: 16

∂L
∂µq

=
1

σ2
(−A>y +A>Aµq) +K−1ZZµq = 0 (5)

∂L
∂Lq

=
1

σ2
A>ALq11

> + (L−>q +K−1ZZLq) = 0 (6)

Solving the above equations gives: 17

µq = σ−2KZZBK
>
XZy (7)

Lq(I + 11>) = KZZBKZZ (8)

withB = (KZZ+σ−2K>XZKXZ)−1. To solve the triangular 18

matrix Lq from (8), we first compute the Cholesky decom- 19

position of I + 11> = CC> and KZZBKZZ = UUT . We 20

then simplify both side of (8) to LqC = U . Lq can then be 21

solved by exploiting the triangular structure on both side with 22

Li,i−k =
Ui,i−k −

∑k−1
j=0 Li,i−jCi−j,i−k

Ci−k,i−k
, k = 0, 1, · · · , i− 1

(9)

where Li,j is a short notation for [Lq]i,j . 23

Prediction. A common approximation assumption associ- 24

ated with the inducing points idea is that the signals between 25

training data and test data are conditionally independent given 26

u (Quiñonero-Candela and Rasmussen 2005). This is particu- 27

larly useful during the test phase. Given the covariate matrix 28

X∗ for the test data, the prediction distribution is given by: 29

p(f∗|X∗, X, y, Z) =

∫
p(f∗, f,u|X∗, X, y, Z)dfdu

=

∫
p(f∗|u, X∗, Z)p(f,u|X, y, Z)dfdu

' Eq(u|X,Z)[p(f∗|u, X∗, Z)]

= N (KX∗Z [KZZ + σ2I]−1µq,

KX∗X∗ −KX∗Z [KZZ + σ2I]−1K>X∗Z)
(10)

We can then make prediction using the mode and evaluate 30

the prediction uncertainty with the covariance matrix from 31

(10). 32

Implementation Details and Parameter Setup33

We implement L-DKGPR using PyTorch (Paszke34

et al. 2019). We formulate eγ using a deep neural35

network (DNN) consisting of multiple fully con-36

nected layers. Specifically, the structure of eγ is37

P-H-CELU-D(0.2)-H-CELU-D(0.2)-Dv, where38

H is the size of hidden units, CELU stands for Continuously39

Differentiable Exponential Linear Units (Barron 2017)40

and D(0.2) represents a dropout layer with 20% dropout41

rate. We set H = 16 for simulated data and H = 3242

for real-life data. The latent dimension Dv is fixed at43

10 for all experiments. Although we only use a simple44

fully connected structure throughout the experiment, the45

implementation is flexible enough to allow more advanced46

DNN structure such as CNN and RNN. The embedding47

function gφ is a I-by-Di parameter matrix. We set Di = Dv .48

Though the full lower triangular matrix Lq can be computed49

using (9), we find that approximating Lq by using only50

its main diagonal components provides similar accuracy,51

but have substantially less computation and numerically52

stable. Therefore, in our implementation, L̃q = diag(U/C).53

We update Θ = {σ2, Z, α(v), α(i), γ, φ} using Adam54

optimizer. The learning rate for Θ − {φ} is fixed at 0.001.55

To facilitate more effective learning on cluster correlation,56

we assign larger learning rate on {φ}, which is fixed at57

0.01. The training and testing batch sizes are set to 1024.58

The maximum training epoch of L-DKGPR is set to 30059

for all data sets. We use early stopping if the R2 evaluated60

on validation set decrease in two consecutive epochs. The61

number of Inducing points is fixed at 10 for all data sets.62

We initialize {σ2, α(v), α(i)} = 1, Z∼U [0, 1)M×(Dv+Di).63

γ, φ are initialized with the default initialization mechanism64

in PyTorch. To avoid numerical issue during Cholesky65

decomposition, we add a small factor ∆ = diag(0.001) to66

the main diagonal of the correlation matrix.67

As for the implementation of our baseline methods, we68

use the implementations of GLMM, GEE and LGPR avail-69

able in the lmer4, PGEE and lgpr packages, respectively70

from CRAN.1. We use the LMLFM implementation from71

https://github.com/junjieliang672/LMLFM. Implementation72

of ODVGP and KISSGP can be found through Gpytorch73

(Gardner et al. 2018). For GLMM, we keep most hyper-74

parameters to their default values but increase the maximum75

iteration to 200. In GEE, we use an first-order auto-regressive76

correlation structure. The maximum iteration is fixed at 200.77

For LGPR, results are averaged over 5 independent simulated78

chains. For each chain, we use 2000 iterations. The number79

of burn-in samples is fixed at 200. Performance of ODVGP80

seems to be sensitive to the the initialization of the induc-81

ing points. We find that using the cluster centers learned by82

a KMeans algorithm generally produce more stable results.83

Throughout all experiments, the number of inducing points84

for both mean and variance are fixed at 100. We use the same85

deep encoder as used in L-DKGPR for KISSGP. The num-86

ber of inducing points for KISSGP is fixed at 32. Maximum87

iteration for both ODVGP and KISSGP is fixed at 200.88

1https://cran.r-project.org/

All experiments are conducted on a desktop machine with 89

Intel Core i7-7700K CPU, 32GB RAM and RTX 2070 super 90

graphics card. Codes are available through https://anonymous. 91

4open.science/r/cce1f2c6-29ff-4941-993d-d597a71ecc8c/. 92

Experimental Data Setup 93

Generating Simulated Data. We construct simulated lon- 94

gitudinal data sets that exhibit i.e., longitudinal correlation 95

(LC) and multilevel correlation (MC) as follows: The out- 96

come is generated using y = f(X) + ε where f(X) is a 97

non-linear transformation based on the observed covariate 98

matrix X and the residual ε∼N(0,Σ). To simulate longitu- 99

dinal correlation, we simply set Σ to a block diagonal matrix. 100

For each individual, we use a first-order auto-regressive cor- 101

relation structure (AR(1)) with decaying factor fixed at 0.9. 102

To simulate a data set that exhibits multilevel correlation, 103

we first split the individuals into C clusters. We then de- 104

fine the cluster correlation matrix by setting the correlation 105

associated to data points in the same cluster to 1. Finally, 106

we compute the multilevel correlation by summing up the 107

longitudinal correlation and cluster correlation. Following 108

(Cheng et al. 2019; Timonen et al. 2019), we simulate 40 109

individuals, 20 observations, and 30 covariates for each indi- 110

vidual. To simulate correlation among the covariates, we first 111

generate 10 base features independently from [0, 1) uniform 112

distribution, then the covariate matrix X is computed using 113

an encoder network with architecture 10 − 100 − Tanh − 114

Dropout(0.7) − BatchNorm − 30 − Tanh. It therefore 115

results in 30 covariates that are conditionally independent 116

given encoder network and base features. We hold out both 117

the base features and the encoder network to all comparing 118

methods, thus leading to a covaraite matrix with non-linear 119

correlation that is unknown to all methods. To generate y, we 120

use another nonlinear transformation f(X), which is defined 121

by a network with structure 30 − 100 − Tanh − 1. In our 122

experiment, We vary the number of clusters C from [2, 5]. 123

Pre-processing on SWAN data. Since CESD score is not 124

contained from the original SWAN data, we manually com- 125

pute the score based on its definition (Radloff 1977). To form 126

the outcome label, we define an adjusted CESD score by 127

y = CESD − 15, thus y ≥ 0 indicates depression. We 128

center y with y = y −mean(y). After computing the label, 129

we exclude all columns that are directly associated to com- 130

puting the CESD score. We convert the categorical features 131

using one-hot encoding and perform standard scaling on the 132

continuous features. 133

Pre-processing on GSS data. Since the original data set 134

contains repeated columns for the same survey question, we 135

keep only one column for each survey question. We re-format 136

all the answer codes associated to ‘unknown’ and ‘missing’ 137

to ‘unknown’. The outcome label is derived from the field 138

‘General Happiness’, we code the value ‘pretty happen’ and 139

‘very happy’ to 1 and the others to−1. As the other covaraites, 140

We convert the categorical features using one-hot encoding 141

and perform standard scaling on the continuous features. 142

Pre-processing on TADPOLE data. There are three data 143

sets in the original files. We first combine the three data 144

sets and remove the repeated data points. Then, we convert145

the categorical features using one-hot encoding and perform146

standard scaling on the continuous features. The outcome147

label is defined by the value of ‘ADAS13’. Similarly, we148

center the label with y = y −mean(y).149

Additional Experiment Results150

Run time Comparison151

The CPU run times and failure to complete execution on152

the real-world data sets are reported in 1. We see that LGPR,153

GLMM and GEE are exceptionally sensitive to the number of154

variables. Indeed, their computational complexity increases155

proportional to P 3 where P is the number of variables. In156

contrast, L-DKGPR, LMLFM and state-of-the-art GP base-157

lines (KISSGP and ODVGP) scale gracefully with increasing158

number of data points and covariates.159

Correction Structure in Simulated Data.160

The outcome correlations estimated by all methods on the161

simulated data are shown in Figure 1. It is easy to see that162

KISSGP and ODVGP are incapable of recovering any correla-163

tion structure from the data. LGPR seems to be slightly better164

than KISSGP and ODVGP when MC is presented. However,165

we see that only one known cluster is correctly recovered166

when C > 2. The correlation estimation results also justify167

the inferior regression performance in terms of R2 as they168

fail to learn the correlation structure. Moreover, we see that169

LMLFM, GLMM and GEE are only capable of recovering170

LC, but not MC. This fact is quite reasonable since by design171

LMLFM is only able to handle a special case of MC where172

cluster correlation exists for individuals observe at the same173

time. Both GLMM and GEE rely on a correct input of cor-174

relation structure which is assumed a priori unknown. We175

note that L-GKDPR is able to recover most of the correlation176

structure present in the data. We further note that L-DKGPR,177

despite being the best performer among the methods com-178

pared in this study, it tends to underestimate the number of179

clusters because the full data correlation is approximated by a180

low-rank matrix (see Eq. (10)) resulting in information loss.181

References182

Barron, J. T. 2017. Continuously differentiable exponential183

linear units. arXiv preprint arXiv:1704.07483 .184

Cheng, L.; Ramchandran, S.; Vatanen, T.; Lietzén, N.; La-185

hesmaa, R.; Vehtari, A.; and Lähdesmäki, H. 2019. An ad-186

ditive Gaussian process regression model for interpretable187

non-parametric analysis of longitudinal data. Nature commu-188

nications 10(1): 1798.189

Gardner, J.; Pleiss, G.; Weinberger, K. Q.; Bindel, D.; and190

Wilson, A. G. 2018. Gpytorch: Blackbox matrix-matrix gaus-191

sian process inference with gpu acceleration. In Advances in192

Neural Information Processing Systems, 7576–7586.193

Liu, H.; Ong, Y.-S.; Shen, X.; and Cai, J. 2020. When Gaus-194

sian process meets big data: A review of scalable GPs. IEEE195

Transactions on Neural Networks and Learning Systems .196

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; 197

Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, 198

L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, 199

M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, 200

J.; and Chintala, S. 2019. PyTorch: An Imperative Style, 201

High-Performance Deep Learning Library. In Wallach, H.; 202

Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; 203

and Garnett, R., eds., Advances in Neural Information Pro- 204

cessing Systems 32, 8024–8035. Curran Associates, Inc. 205

Quiñonero-Candela, J.; and Rasmussen, C. E. 2005. A unify- 206

ing view of sparse approximate Gaussian process regression. 207

Journal of Machine Learning Research 6(Dec): 1939–1959. 208

Radloff, L. S. 1977. The CES-D scale: A self-report depres- 209

sion scale for research in the general population. Applied 210

psychological measurement 1(3): 385–401. 211

Timonen, J.; Mannerström, H.; Vehtari, A.; and Lähdesmäki, 212

H. 2019. An interpretable probabilistic machine learn- 213

ing method for heterogeneous longitudinal studies. arXiv 214

preprint arXiv:1912.03549 . 215

Table 1: Runtime (in second) comparison on real-world data sets. We use ‘N/A’ to denote execution error.

Data sets N I P L-DKGPR KISSGP ODVGP LGPR LMLFM GLMM GEE

TADPOLE 595 50 24 0.03 0.34 0.03 6.39 0.01 0.01 0.13
SWAN 550 50 137 0.03 0.29 0.04 26.1 0.02 0.06 0.59
GSS 1,500 50 1,553 0.12 0.09 0.11 N/A 0.30 N/A 30.1

TADPOLE 8,771 1,681 24 1.48 0.36 1.32 N/A 0.25 0.03 4.66
SWAN 28,405 3,300 137 4.48 1.21 2.81 N/A 1.74 N/A N/A
GSS 59,599 4,510 1,553 5.31 2.01 4.65 N/A 24.35 N/A N/A

Figure 1: Outcome correlation estimated by all methods on simulated data.

