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Derivation of LMLFM

In this section, we detail the process of solving LMLFM.
Fig. outlines the hierarchical Bayesian model of LMLFM.
The resulting generative model is as follows:
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we consider solving the Maximum A Posteriori (MAP)

problem. Thus, the objective function is expressed as:

O©* = argmax 7 (Oly, X, Op) (1)
e

where the model parameters and hyperpriors are represented
by ©® = {®,0,b,u} and ®¢ = {a, Bo, by, by, } Tespec-
tively. In the following, we only provide the derivation w.r.t.
the individual parameters, i.e., ©F = {a, ©F, u*, b7 }. To
keep the notation light, we omit the superscript Z till the end
of this section.

Update of ©7: For each model parameter §; € O, the
prediction is a linear combination of two functions g() and
h(i) that are independent of the value of 6;:

9i = g(i) + h(i)8; )
with
g(i) = diag(X, - ©97) h(i) = X, + 67

where ©F is the matrix of latent factors constructed by
the observations associated to i. Thus we have 7(0;) =
m(yi| X, 0;, ) - w(0;|puk, by ), which is given by:
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The log of which is:
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Let’s define the gradient of |0;;, — ux| by e. Then following
the sub-gradient equations (see e.g., (Bertsekas 1999)), we
have e = sgn (6;x — ) if 0;5 # g and e € [—1, 1] other-
wise. For cases where |0, — pu| is differentiable, the optimal
07, can be derived by simply setting the gradient of (3) to 0.
Otherwise, 0;; = ui. Consequently, we have the following
results:
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where ()5 is the ReLU function; r;, = h], (y; — g(i) —

qulzp\k Oighiq — Rik k), with 1 : p\k denoting the set of

integers ranging from 1 to p excluding & and h;y, is the k-th

column of h(7).

Update of o: 7(a|) = 7(y|X, 0, a) - 7(a|ag, By). The

full conditional posterior of o can be obtained by:

lyl

04|0<H0‘ eXp{ (il/j—:l)j)Q}'aao_lexp{—aﬁo}

~ aao+|y\/2—1 exp{

—a (B0 + lly - 913 /2) }
x Gamma (ao + 1yl /2,60 + ||y — 37”3 /2)

the mode of w(a|) is then

-1
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Update of p: Since the components in p are i.i.d., we
only consider computing the full conditional posterior of 1
(/f = 1, ce ,p). W(/Lk|) = 77(9-16|/~Lk7 bk) . ’/T(/.Lk|0, bﬂo)' The
full conditional posterior of y can be obtained by:
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The problem of finding the optimal y, can be converted to
finding the weighted median of the vector 6.5, U {0} with the
weights {by}*_; U {b,, }, which, as discussed in (Gurwitz
1990), can be solved in linear time.

Update of b: Since the components in b are i.i.d., we
only consider computing the full conditional posterior of by
(k = 1, ce ,p). W(bk‘) = 7T(04€|;Lk,bk) . W(bk‘o,bbo) . The
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Algorithm 1 LMLFM

1: Input: Training set S = {X, y}, hyperpriors @, con-
vergence criteria 7" (See Sec. ).

2: QOutput: ©.

3: Initialize the parameters {b, o, ., O}

4: repeat

5. Update the parameters in the following order:

{6, a, u*, u®, %, 6%}
6: until convergence

full conditional posterior of by can be obtained by:
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Assume by, > 0, by setting dlog 7(by|)/dby, = 0, we arrive
at:

by

b,
This is a simple quadratic function. Combining the fact that
b, > 0, the root of is found by:

4
p = 2by, (\/”2 + b 0. — prll, — n) 5
bo

We can easily verify that by > 0 only when ||0.,, — pi||; >
0. For the case where ||6.;, — puxl|; = 0, we have 6;, =
pr forall e = 1,---  n. This is equivalent to rejecting the
randomness of 6.;; thus, if ||0.;, — pl|; = 0, we can draw
two conclusions: i) variable k is subject to fixed effect instead
of random effects; ii) 0.~ Laplace(uy, 0), thus we get by, =
0.
The pseudo-code of LMLFM is given in Algorithm 1.
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Complexity Analysis.

The computation of © can be accelerated by pre-computing
and caching 9. Then, ¢ can be maintained up-to-date using:

g(i)+ > Oighig =19 — 0 s 9 =9+ 05 Vha

g€l:p\k

where 0;? is the value of 6;;, for the t-th iteration. Thus,
updating O takes O(]S|) time. Next, computing « requires
9, which is already cached; hence, complexity for updat-
ing « is O(]y|). The time complexity of updating u, b is
O(p(n + m)). Therefore, the overall computational com-
plexity for one complete iteration is O(|S]), which is strictly
linear in the size of the training data. It is worth noting that
the time complexity of FM is O(k |S|) (Rendle 2012), where
k denotes the number of latent factors. The space complexity
of LMLFM is O(|y|), identical to that of FM (Rendle 2012).
We conclude that our algorithm is more efficient than FM.

Theoretical Analysis

In this section, we will prove two important properties in
LMLFM: Ascent property and Convergence. Let Z+ denotes
the set of all positive integers. To keep the notation light,
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Figure 1: The hierarchical Bayesian structure of LMLFM.
Laplace layer 1 is designed to select predictive latent factors;
Laplace layer 2 is designed to identify random effects.

we overload the symbol 6; to refer to the j-th component
of the vectorized full parameter set © = {0;}9_,. The re-
maining set of parameters excluded 6; is denoted by ©_;.
We denote by 7 (6;]) the full conditional posterior of 6, i.e.,
7 (0;]y, X, ©¢, ©_;). Putting these together, the joint pos-
terior density at the ¢-th iteration in (1) can be expended
as:

7 (0]y, X,0) = (6]) -7 (6)]y, X, @) ©)

Proposition 1. Ascent property. = (©(t+V[) > 7 (©®)])
holds for all iteration t € Z+.

Proof. Without loss of generality, we assume that
® is updated with the following order #61,...,04,
where 6; is updated by the mode of 7 (6;]),7 =
1,...,d. Therefore, when 5 = 1, we must have

T 9§t+1)| > w(@it)\ . Thus, followed by (6), we
have = (6,08, 00]) = = (01,0, 00]).

Similarly, for j = 2,...,d, 9§t+1) = argmaxy, 7(0;])
with other parameters fixed. Consequently, we

(t+1) (t+1) H(t) (t)
have (60,00 00 ol)) >
x 9?“)7...,9§iﬁ1),9§t>,9§21,...,ef;>|). At j = d,
we achieve m (@H+D]) > 7 (©®)]). O

Proposition 2. Convergence. If m (0()|) is bounded above,
there exists an iteration t € Z7%, such that ¥i €
Z*t, |m (0UFD]) — 1 (0W])| < € holds for € > 0.

Proof. According to Proposition 1, we only need to
prove m(@+)]) — 7 (©@®]) < e Let’s assume
that Vt € Z%*, such that 3i € Z* x(©@¢)]) —
7r(®(t)|) > e. Then we can always find a mono-
tonically increasing sequence {aj},—, with ag = 0,
such that 7 (@(tFav)|) > g(@tta-1)) > ... >
7 (©(+a0)]). Let’s further define €, as the lower bound of
7 (@Han)|) —r (©(+ar-1)[). Thus, 22?21 7 (@+e))) —



aj— aj k
m(@tta-1)) = g (@ttw]) — r(@W)) > > j=1 6
Then we have 7 (@(+ax)|) > 7 (@WY)]) + Z§=1 €j. No-
tice that Vk, e, > 0, we then have klim T (®(t+“k)|) >

—00
m(O@W]) + 372, € > 377, €; — oo. However, the den-
sity function 7 (®|) is assumed bounded, thus leads to a
contradiction. O

Proposition 1 establishes the convergence of the joint pos-
terior density 7 (©]). It also allows us to set the stopping
criteria of our model: checking either the number of itera-
tions exceeds a predefined threshold or the improvement of
joint posterior density is below a preset threshold. However,
because computing 7 (©|) is intractable, we instead monitor
the full joint density 7 (y, X, ©, Q).

Correlation Estimation
Longitudinal Correlation (LC) Let’s denote o, j as two
different observations. The LC is computed as follows:
cov (Yio, yu)
=E[(2],(6; +6,) +6]6,) (], (8: + 6,) + 6]6;)7]
—E[(x], (0: +8,) +670,)] - E [(x]; (6: + 0;) + 6]6;)]
=2 (@ip + pO) " [b7] (w5 + pu©)
Cluster Correlation (CC) Let’s denote ¢, v as two differ-
ent individuals. The CC is computed as follows:
cov (yiov yvo)
=E[(@], (0; + 0,) + 0]6,) (x], (0, + 6,) + 6760,)"]
~E[(z], (0: +86,) +0]0,)] - E[(x], (8, +6,) + 6]6,)]
=2 (@i + 1) T [0 (00 + 1)
Multi-level Correlation Finally, the multi-level correla-
tion is computed as follows:
cov (yim yio)
=E [(z], (0: + 0,) + 0]0,) (], (6; + 6.) + 676,)"]
—E[(x], (0; +0,) + 0]6,)] - E[(z], (6; + 6,) + 6]6,)]
=2z] ([b"]* + [b°]?) i + 4 - tr ([b7]? - [6°]?)

where tr (A) is the trace of matrix A.

Parametrization

Initialization. Previous study has pointed out that ICM-
based techniques are particularly sensitive to the choice of
initializations (Szeliski et al. 2008). We find in our experi-
ments that LMLFM is rather robust to the choice of parameter
initialization. The set of parameters that need initialization
are {b, o, u,0}. We simply let b = 1,4 = 0 and © = 0.
The precision « tends to have stronger impact on the model
performance. Our experiments show that setting o with the
form 7 [var (y)] ~! (where 7 is a hyper-parameter controlling
the value of precision) provides satisfactory results.'

L7 is the only tuning hyper-parameter in LMLFM.

Hyperprior settings. Due to the high number of explana-
tory variables, the impact of g, By are negligible; therefore,
we chose trivial values ag = fy. We also set b, = by, = 1.
We claim convergence if the change of normalized log poste-
rior density value of two consecutive iterations is less than
10~ or the number of iterations exceed 10.

Experimental Protocol

The observations in the generated data are assigned to dis-
joint training and test sets while simultaneously ensuring that
for any given individual, no observation that is included in
the training data has a time stamp that is later than any obser-
vation that is included in the test data. This ensures that while
making predictions no information from the future is used.
Specifically, we use the following procedure: i) Randomly
split the complete data set into two subsets, i.e., .S (a) (70%)
and S (30%); ii) For each individual i € S(®), we find out
the observation with the latest time stamp and denote it as
t;; iii) For each individual ¢ € S (b), we split the observations

associated to ¢ into two half. Specifically, let Si(bl) denotes
the subset of observations with time stamp less than ¢; and
Si(bZ) denoting the rest; iv) The training and test data is given
by S(@ U S®1) and S(¥2) respectively.

Most of the implementations of our baselines are pub-
licly available. we use the LASSO code from (Pedregosa et
al. 2011). For M-LMM, LMMLASSO, GLMMLASSO and
rPQL, we utilize the 1mer4, Immlasso, glmmLasso and
rpql package, respectively from CRAN.> We implemented
MLLASSO and LMLFM in Python. We use the implemen-
tation of Random forest in (Pedregosa et al. 2011)), FM in
(Mikhail Trofimov 2016) and the Penalized GEE (PGEE) in
the PGEE package in CRAN. All experiments are conducted
on a desktop computer with i7-7700K CPU, 16G RAM and
GeForce GTX 1060 graphics card. The hyperparameters of
all methods are tuned to optimize their performance using
5-fold cross validation. We report performance statistics ob-
tained from 100 independent runs. Evaluation scores are
computed using only the test data.

Simulated data. The outcomes y are drawn inde-
pendently from N (y;o|x] (8 +6; +0,) +0]6,,1), with
8 = {1,2,3,-1,—-2,-3,7,10,0,--- ,0}. Each compo-
nent 6., € O follows Laplace(0.|0,by), where bZ for
k=1,---,10 and b¢ for k = 5,--- ,15 are drawn from
U(0, 1). For other k, we set b = b9 = 0. Thus there are 15
and p — 15 relevant features with random effects and fixed
effects respectively. Absence of LC or CC is simulated by
manually setting {60, bo} or {@I , bt } to zero, respec-
tively.
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