@inproceedings{liang2024inducing,title={Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data},author={Liang, Junjie and Ren, Weijieying and Sahar, Hanifi and Honavar, Vasant G},booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},volume={38},number={12},pages={13736--13743},year={2024},}
2021
Longitudinal deep kernel Gaussian process regression
@inproceedings{liang2021longitudinal,title={Longitudinal deep kernel Gaussian process regression},author={Liang, Junjie and Wu, Yanting and Xu, Dongkuan and Honavar, Vasant G},booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},volume={35},number={10},pages={8556--8564},year={2021},}
Unite: Uncertainty-based health risk prediction leveraging multi-sourced data
@inproceedings{chen2021unite,title={Unite: Uncertainty-based health risk prediction leveraging multi-sourced data},author={Chen, Chacha and Liang, Junjie and Ma, Fenglong and Glass, Lucas and Sun, Jimeng and Xiao, Cao},booktitle={Proceedings of the Web Conference 2021},pages={217--226},year={2021},}
Fare: Enabling fine-grained attack categorization under low-quality labeled data
Junjie Liang, Wenbo Guo, Tongbo Luo, and 3 more authors
In Proceedings of The Network and Distributed System Security Symposium (NDSS), 2021
@inproceedings{liang2021fare,title={Fare: Enabling fine-grained attack categorization under low-quality labeled data},author={Liang, Junjie and Guo, Wenbo and Luo, Tongbo and Vasant, Honavar and Wang, Gang and Xing, Xinyu},booktitle={Proceedings of The Network and Distributed System Security Symposium (NDSS)},year={2021},}
Transformer-style relational reasoning with dynamic memory updating for temporal network modeling
Dongkuan Xu, Junjie Liang, Wei Cheng, and 3 more authors
In Proceedings of the AAAI Conference on Artificial Intelligence, 2021
@inproceedings{xu2021transformer,title={Transformer-style relational reasoning with dynamic memory updating for temporal network modeling},author={Xu, Dongkuan and Liang, Junjie and Cheng, Wei and Wei, Hua and Chen, Haifeng and Zhang, Xiang},booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},volume={35},number={5},pages={4546--4554},year={2021},}
How Do We Move: Modeling Human Movement with System Dynamics
@inproceedings{wei2021we,title={How Do We Move: Modeling Human Movement with System Dynamics},author={Wei, Hua and Xu, Dongkuan and Liang, Junjie and Li, Zhenhui Jessie},booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},volume={35},number={5},pages={4445--4452},year={2021},}
@inproceedings{liang2020lmlfm,title={LMLFM: longitudinal multi-level factorization machine},author={Liang, Junjie and Xu, Dongkuan and Sun, Yiwei and Honavar, Vasant},booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},volume={34},number={04},pages={4811--4818},year={2020},}
2018
A user similarity-based Top-N recommendation approach for mobile in-application advertising
Jinlong Hu, Junjie Liang, Yuezhen Kuang, and 1 more author
@article{hu2018user,title={A user similarity-based Top-N recommendation approach for mobile in-application advertising},author={Hu, Jinlong and Liang, Junjie and Kuang, Yuezhen and Honavar, Vasant},journal={Expert Systems with Applications},volume={111},pages={51--60},year={2018},publisher={Pergamon},}
Top-N-rank: A scalable list-wise ranking method for recommender systems
@inproceedings{liang2018top,title={Top-N-rank: A scalable list-wise ranking method for recommender systems},author={Liang, Junjie and Hu, Jinlong and Dong, Shoubin and Honavar, Vasant},booktitle={2018 IEEE International Conference on Big Data (Big Data)},pages={1052--1058},year={2018},organization={IEEE},}
2017
iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection
@article{hu2017ibgp,title={iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection},author={Hu, Jinlong and Liang, Junjie and Dong, Shoubin},journal={Mobile Information Systems},year={2017},}